Systematic development of real-time driver drowsiness detection system using deep learning

نویسندگان

چکیده

Advancements in globalization have significantly seen a rise road travel. This has also led to increased car accidents and fatalities, which become global cause of concern. Driver's behavior, including drowsiness, contributes many the deaths. The main objective this study is develop system diminish mishaps caused by driver's drowsiness. Recently deep convolutional neural networks been used multiple applications, identifying anticipate driver However, limited studies investigated systematic optimization (CNNs) hyperparameters, could lead better anticipation To bridge gap, holistic approach based on learning method proposed paper drivers' drowsiness provide an alerting mechanism prevent related accidents. ensure optimal performance achievement system, database real-time images preprocessed via Haar cascade's classifiers systematically optimize CNN model's hyperparameters. Different metrics, accuracy, precision, recall, F1-score, confusion matrix, are evaluate model. training evaluation results model achieved accuracy 99.87%, while testing accurately classify drowsy with 97.98%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Real Time Driver Drowsiness Detection System

Driving with drowsiness is one of the main causes of traffic accidents. Driver fatigue is a significant factor in a large number of vehicle accidents. The development of technologies for detecting or preventing drowsiness at the wheel is a major challenge in the field of accident avoidance systems. Due to the hazard that drowsiness presents on the road, methods need to be developed for countera...

متن کامل

Real-time Nonintrusive Detection of Driver Drowsiness

Driver drowsiness is one of the major causes of serious traffic accidents, which makes this an area of great socioeconomic concern. Continuous monitoring of drivers’ drowsiness thus is of great importance to reduce drowsiness-caused accidents. This proposed research developed a real-time, nonintrusive driver drowsiness detection system by building biosensors on the automobile steering wheel and...

متن کامل

Driver Drowsiness Detection System Using Image Processing

Drivers who do not take regular breaks when driving long distances run a high risk of becoming drowsy a state which they often fail to recognize early enough according to the experts. Studies show that around one quarter of all serious motorway accidents are attributable to sleepy drivers in need of a rest, meaning that drowsiness causes more road accidents than drink-driving. Attention assist ...

متن کامل

Driver Drowsiness Detection System Based on Feature Representation Learning Using Various Deep Networks

Statistics have shown that 20% of all road accidents are fatigue-related, and drowsy detection is a car safety algorithm that can alert a snoozing driver in hopes of preventing an accident. This paper proposes a deep architecture referred to as deep drowsiness detection (DDD) network for learning effective features and detecting drowsiness given a RGB input video of a driver. The DDD network co...

متن کامل

Real-Time Warning System for Driver Drowsiness Detection Using Visual Information

Traffic accidents due to human errors cause many deaths and injuries around the world. To help in reducing this fatality, in this research, a new module for Advanced Driver Assistance System (ADAS) for automatic driver drowsiness detection based on visual information and Artificial Intelligence is presented. The aim of this system is to locate, to track and to analyze the face and the eyes to c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IAES International Journal of Artificial Intelligence

سال: 2022

ISSN: ['2089-4872', '2252-8938']

DOI: https://doi.org/10.11591/ijai.v11.i1.pp148-160